

VU medisch centrum

"Research methods to critically appraise measurement proprieties in pain measurement"

Raymond Ostelo

Professor of Evidence Based Physiotherapy EMGO⁺ Institute

Some backgound

Rehabilitation after lumbar disc surgery (Review)

Oosterhuis T, Costa LOP, Maher CG, de Vet HCW, van Tulder MW, Ostelo RWJG

Some backgound

SPINE Volume 28, Number 16, pp 1757–1765 ©2003, Lippincott Williams & Wilkins, Inc.

Behavioral Graded Activity Following First-Time Lumbar Disc Surgery

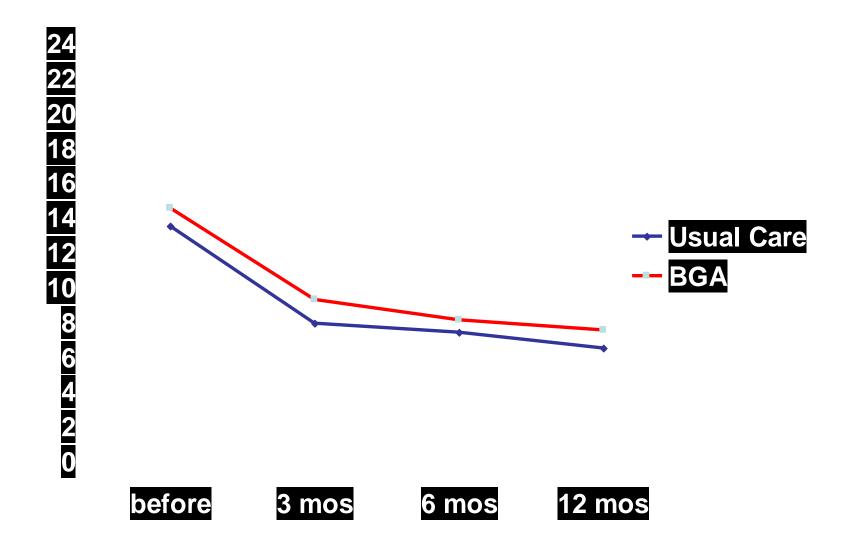
1-Year Results of a Randomized Clinical Trial

Raymond W. J. G. Ostelo, PT, PhD,*† Henrica C. W. de Vet, PhD,‡ Johan W. S. Vlaeyen, PhD,§ Maria R. Kerckhoffs, PT, MSc,*†|| Willem M. Berfelo, MD PhD,¶ Pieter M. J. C. Wolters, PT,|| and Piet A. van den Brandt, PhD*

> SPINE Volume 29, Number 6, pp 615–622 ©2004, Lippincott Williams & Wilkins, Inc.

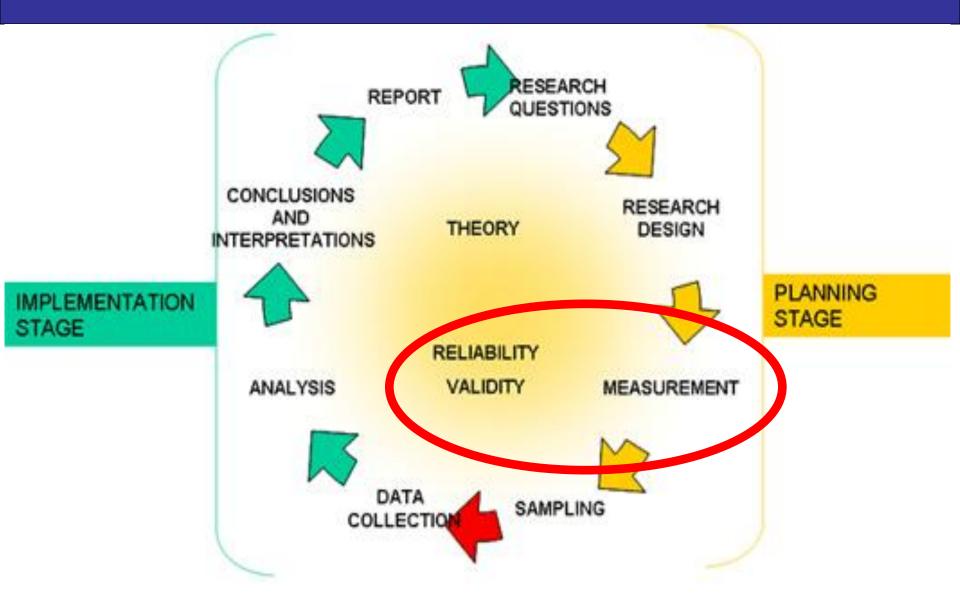

Economic Evaluation of a Behavioral-Graded Activity Program Compared to Physical Therapy for Patients Following Lumbar Disc Surgery

Raymond W. J. G. Ostelo, PhD, PT,*‡ Mariëlle E. J. B. Goossens, PhD,†§ Henrica C. W. de Vet, PhD,‡ and Piet A. van den Brandt, PhD*


Outcome measures

- Global Perceived Recovery
- Physical Functioning
- Pain
- Fear of movement (re-injury)

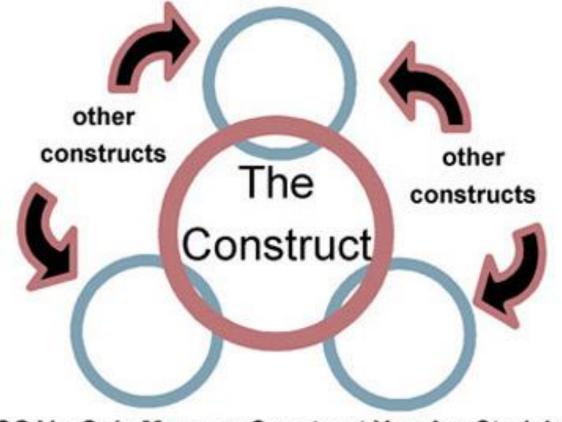
Global perceived effect


Physical Functioning (RDQ)

6 PROMs to measure physical functioning

Table 3 The variance components and indexes

Questionnaire
RDQ-24
MRDQ
RDQ-18
SF-36 PhF
SF-36 RLPh
MC



confusion bemusement bewilderment tangle bafflement befuddlement ement an DO C ation puzzlement xed re

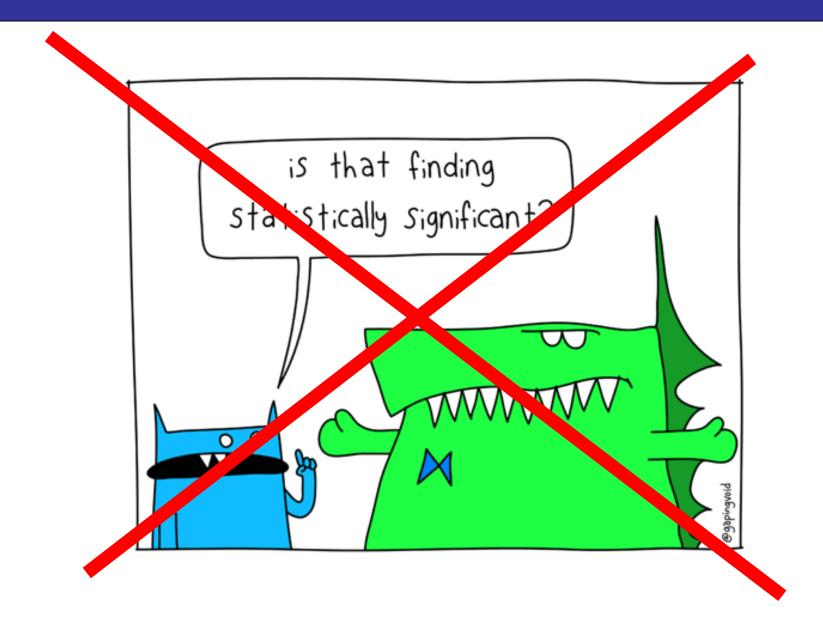
Validity

GOAL: Only Measure Construct You Are Studying

The concept of validity

- Knowledge about the construct to be measured
 - Theoretical foundations & conceptual models
- Complexity of the construct
 - Unidimensional vs multidimensional
- Dependency on the situation
 - Target population
- Validation of scores, not measurement instruments
 Validating the use to which the instrument is put
- Formulation of specific hypotheses
 - Precise theories & models enable strong validation tests
- Validation as a continuous process
 - Often only circumstantial evidence

CONTENT & FACE VALIDITY


1. Face validity

• The degree to which an instrument, indeed, looks as though is an adequate reflection of the construct to be measured.

2. Content validity

- Do all items refer to relevant aspects of the construct?
- Are all items relevant for study population?
- Are all items relevant for the purpose of the application of the instrument?

CONTENT & FACE VALIDITY

Validity: do we speak the same language?

Process of content validation: steps to follow

- 1. Information about construct & situation
 - Specification theoretical models
- 2. Information about content of instrument
 - Full details, including procedures
- 3. Select expert panel
 - Independent to prevent 'over enthusiasm'
- 4. Assess correspondence between instrument & construct
 - Judgment: sufficiently relevant and comprehensive (also users)
- 5. Strategy or framework to assess correspondence between instrument & construct

CONTENT OF ITEMS

RDQ 24 RDQ 18 MC SF-36 Ph F ?

Sport (Strenuous) Kneel down / bend Get out of chair Sitting long time Walking Lifting

> <u>Conclusion</u> Face validity: all (+) Content validity: depends...

Framework: an example

Content comparison				
ICF category ¹	QL-I	WHO	NHP	SF-36
		DASII		
d450 Walking			1	
d4500 Walking short distances				1
d4501 Walking long distances		1		2
d455 Moving around			2	
d4551 Climbing			2	
d510 Washing oneself	1	1		1
d530 Toileting	1			
d540 Dressing	1	1	1	1
d550 Eating	1	1		
d6309 Preparing meals, unspecified			1	
d640 Doing housework	1	1	1	2
d6509 Caring for household objects		1		

¹The numbers correspond to various disability (d) categories in the ICF classification

ICF = International Classification of Functioning, QL-I = Quality of Life-Index, WHO DASII = World Health 18 Organisation Disability Assessment Schedule, NHP = Nottingham Health Profile.

Concurrent validity: an example Cervical Range of Motion (CROM)

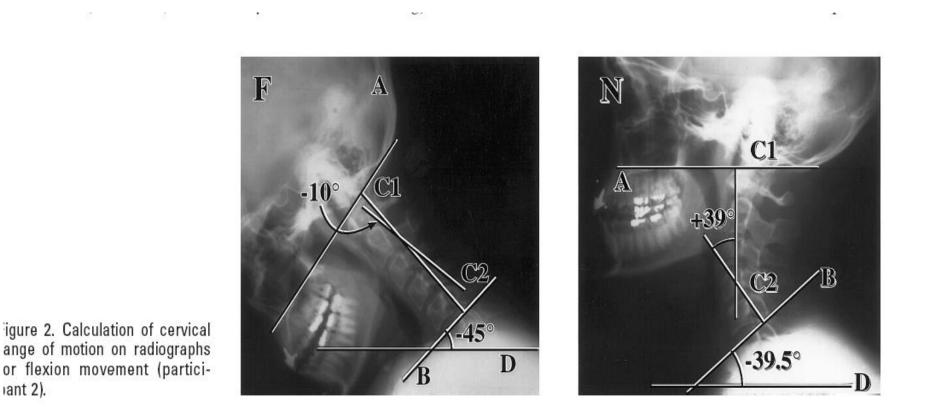



Figure 1. The cervical range of motion (CROM) goniometer.

CRITERION: RADIOGRAPHICS

ant 2).

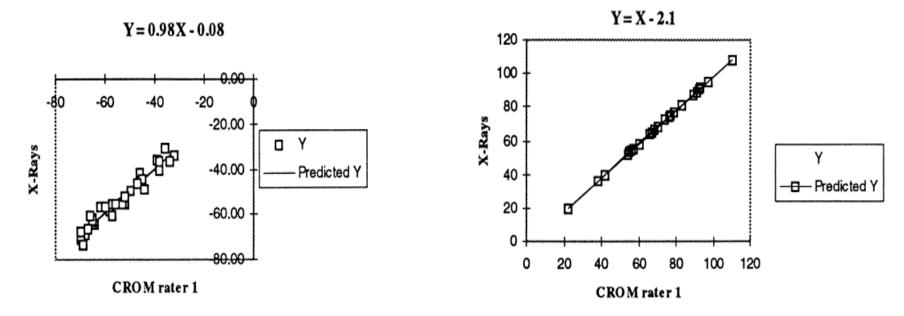


Figure 4. Regression analysis of cervical range of motion on radiographs for flexion.

Figure 5. Regression analysis of cervical range of motion on radiographs for extension.

Statistical parameters

Level of measurement		Same units	Statistical parameter
Gold standard	Measurement		
	instrument		
dichotomous	dichotomous	yes	sensitivity and specificity
	ordinal	n.a.	ROC
	continuous	n.a	ROC
ordinal	ordinal	yes	weighted kappa
		no	Spearman's r ¹ or other measure of association
	continuous	n.a	ROCs ² /Spearman's r
continuous	continuous	yes	Bland and Altman limits of agreement or ICC ³
		no	Spearman's r or Pearson's r

 1 r = correlation coefficient; 2 ROCs: for an ordinal gold standard a set of ROCs may be used,

dichotomising the instrument by the various cut-off points; ³ICC – Intraclass Correlation Coefficient

Construct validity: hypotheses testing

• The degree to which scores of an instrument are consistent with hypotheses

hypotheses testing: steps to follow

- 1. Describe construct to be measured
 - Detailed & conceptual model
- 2. Formulate hypotheses about expected relationships
 - related constructs or unrelated constructs
 - expected differences between sub-groups of patients
- 3. Describe measurement instruments of comparator!!
- 4. Gather empirical data
- 5. Assess consistency of results and hypotheses
- 6. Discus observed findings
 - rival theories or alternative explanations

Research Report

Responsiveness to Change of 10 Physical Tests Used for Patients With Back Pain

L.I. Strand, PT, PhD, is Professor, Department of Public Health and Primary Health Care, Physiotherapy Research Group, University of Bergen, Kalfarveien 31, 5018 Ber-

Liv Inger Strand, Bodil Anderson, Hildegunn Lygren, Jan Sture Skouen, Raymond Ostelo, Liv Heide Magnussen

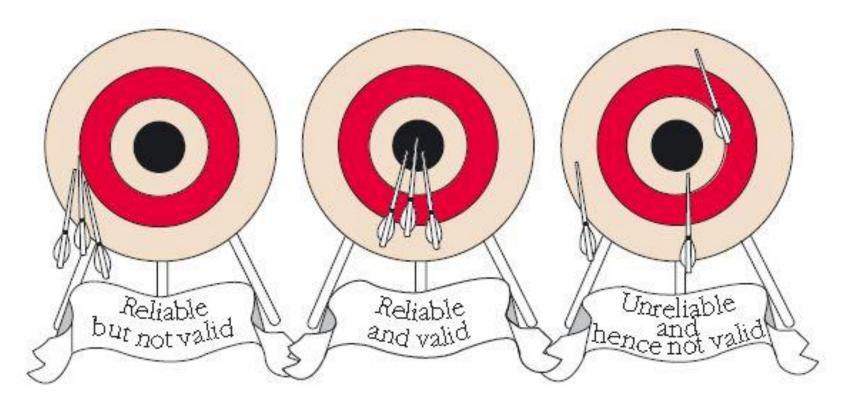
Construct validity

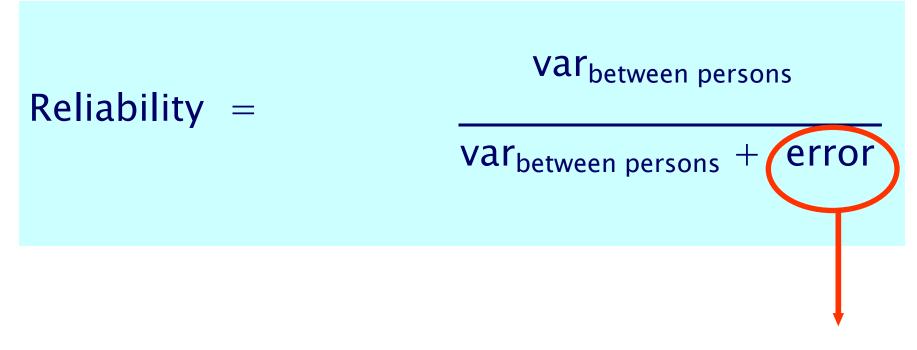
Construct validity (baseline scores)

- 1. The scores of physical tests of activities were expected to be moderately correlated (.60>r≥.30) with scores of self-report questionnaires of functioning.
- 2. The scores of physical tests of body functions were expected to be at least weakly correlated (.30>r≥.20) with scores of self-report questionnaires of functioning.
- 3. Scores of all physical tests were expected to be more highly correlated with scores of the Hannover Functional Ability Questionnaire than with scores of the Roland-Morris Disability Questionnaire.
- 4. Scores of the Back Performance Scale were expected to be most highly correlated with the scores of the self-report questionnaires.

	Baseline Scores		
Physical Tests	FFbH-R ^b	RMDQ ^c	
Body functions			
Biering-Sørensen test	16	33**	
Spondylometry	37**	26**	
GPE ^d flexibility subscale	.06	.09	
Lateral flexion test	40**	24*	
Fingertip-to-floor test	.20*	<.01	
Loaded reach test	23*	10	
Activities			
PILE ^e	44**	32**	
Lift test	42**	38**	
15-m walk test	40**	37**	
Back Performance Scale	.56**	.44**	

Validity & Reliability




Figure 5.1 Reliability and validity. (Source: Open University, 1979, Classification and Measurement, DE304, Block 5, The Open University, Milton Keynes, p. 68)

6 PROMs to measure physical functioning

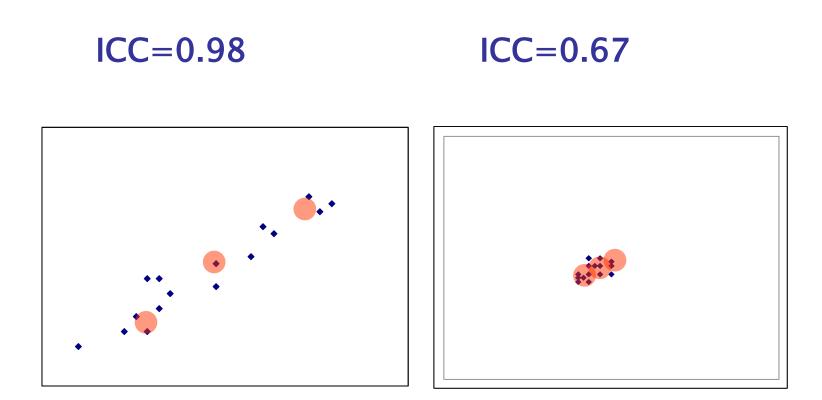
Table 3 The variance components and indexes

	Between subject	Within-subject variance		
Questionnaire	variance	Between measures	Residual	ICC (95% CI)
RDQ-24 MRDQ RDQ-18 SF-36 PhF SF-36 RLPh MC	11.152 11.520 7.868 185.660 121.992 83.597	0.596 0.512 0.271 25.561 92.469 237.373	3.257 2.708 2.317 98.442 532.531 289.832	0.74 (0.51–0.87) 0.78 (0.57–0.89) 0.75 (0.55–0.87) 0.60 (0.28–0.79) 0.16 (0–0.45) 0.14 (0–0.40)

Reliability in formula...

sqrt error = standard error of measurement (SEM)

Reliability in formula...


var_{between persons}

var_{between persons} + error

Suppose: error = 1 kgAdults(range in weight: 50 to 100 kg)Babies(range in weight: 3 to 5 kg)

- Reliability Adults = 50 / 50 + 1 = 0,98
- Reliability Babies = 2/2+1 = 0,67

Reliability graphically ...

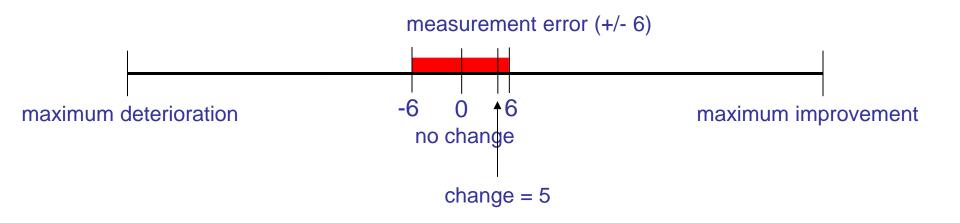
ICC = *Intra Class Correlatiecoëfficiënt*

Measurement error and change


 Linking Smallest Detectable Change (SDC) to Minimal Important Change (MIC)

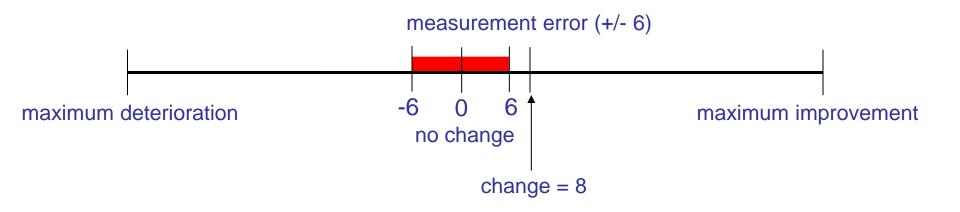
• Main focus now on interpretation of change scores in individual patients

'Real' change


Only change larger than the measurement error can be considered '**real**' change

Example

Example 1


Change score = 5 points Measurement error = 6 points

A change of 5 points can NOT be distinguished from no change because of measurement error 35

Example 2

Change score = 8 points Measurement error = 6 points

A change of 8 points CAN be considered 'real' change

'Real' change

Only change larger than the measurement error can be considered 'real' change (statistically significant change)

'real' change is the smallest change in score that can be detected beyond measurement error

This is called Smallest Detectable Change (SDC)

Smallest Detectable Change

- SDC is a parameter of measurement error
- Should be measured in persons who have NOT changed (stable persons)
- Test-retest design

Smallest Detectable Change (some examples)

Table 3 The variance cc

Questionnaire	SEM (95% CI)	SEM (%) ^a (95% CI)	MDC ^b (95% CI)	MDC (%) ^c (95% CI)
RDQ-24	2.0 (1.5-2.9)	8.2 (6.3–12.1)	5.4 (4.2-8.0)	22.5
MRDQ	1.8 (1.4–2.6)	7.2 (5.6–10.4)	5.0 (3.9–7.2)	21.7
RDQ-18	1.6 (1.2–2.0)	8.9 (6.7–11.1)	4.5 (3.3–5.5)	25.0
SF-36 PhF	11.1 (8.2–17.4)	11.1 (8.2–17.4)	30.9 (22.7-48.2)	30.9
SF-36 RLPh	25.0 (22.8–27.4)	25.0 (22.8-27.4)	69.3 (63.2–75.9)	69.3
MC	23.0 (14.0-61.2)	23.0 (14.0-61.2)	63.6 (38.8–100)	63.6

International Journal of Behavioral Medicine 2007, Vol. 14, No. 4, 242–248

Copyright © 2007 by Lawrence Erlbaum Associates, Inc.

Assessing Pain and Pain-Related Fear in Acute Low Back Pain: What Is the Smallest Detectable Change?

Raymond W. J. G. Ostelo, Ilse J. C. M. Swinkels-Meewisse, Dirk L. Knol, Johan W. S. Vlaeyen, and Henrica C. W. de Vet

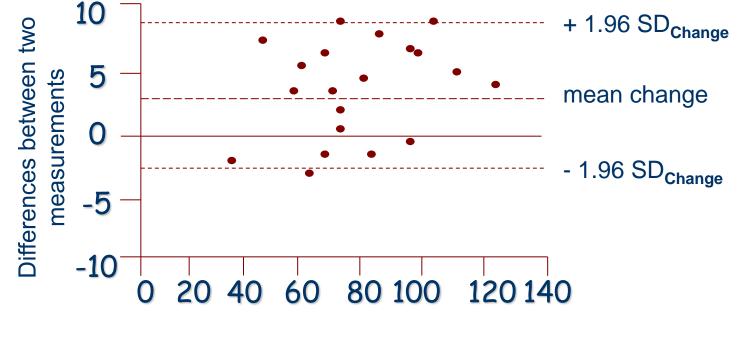

Variance Between- Subjects		Variance Within-	Subjects					
Questionnaire	Score		Between Measures	Residual	SEM (95% CI)	SEM (%)	SDC	SDC (%)
Pain (VAS)	0–100	486.156	6.644	163.740	13.1 (11.7, 14.8)	13.1	36.2 (32.4, 41.0)	36.2
TSK total	17–68	38.686	0.000	11.068	3.3 (3.0, 3.7)	6.5	9.2 (8.4, 10.3)	18.0
TSK "harm"	6–24	10.268	0.006	3.108	1.8 (1.6, 2.0)	10.0	4.9 (4.4, 5.5)	27.2
TSK "activity avoidance"	7–28	11.027	0.000	3.849	2.0 (1.8, 2.2)	9.5	5.4 (4.9, 6.1)	25.7
FABQ physical activity	0–24	20.498	0.156	11.461	3.4 (3.1, 3.8)	14.2	9.4 (8.5, 10.6)	39.6
FABQ work	0–42	83.761	0.000	20.864	4.6 (4.1, 5.1)	10.9	12.7 (11.5, 14.1)	30.2

Table 4.Agreement Parameters (n = 176)

Note. SEM = $\sqrt{}$ within-subjects; SEM (%) is SEM expressed in percentages scale related; SDC = $1.96 \times \sqrt{2} \times$ SEM, SDC (%) is SDC expressed in percentages of scale range.

Smallest Detectable Change

Smallest Detectable Change (SDC) is conceptually equivalent to the limits of agreement (Bland and Altman plot)

Average of two measurements

Terminology: SDC versus SDD

- Smallest Detectable Change is about changes within persons over time
- Smallest Detectable Difference is about differences between persons (or observers)

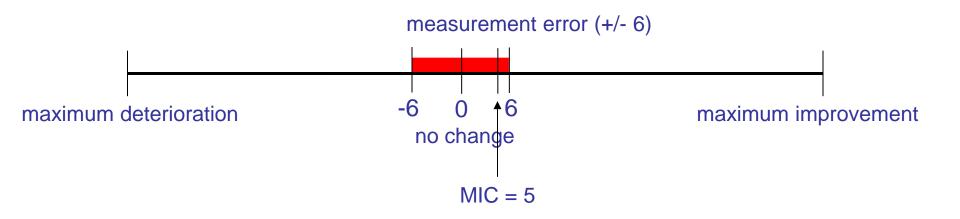
Important change

 It is not self-evident that 'real' change indicate an *important* change from the patients', clinicians' or societal perspective

 A measure of important change = Minimal Important Change (MIC)

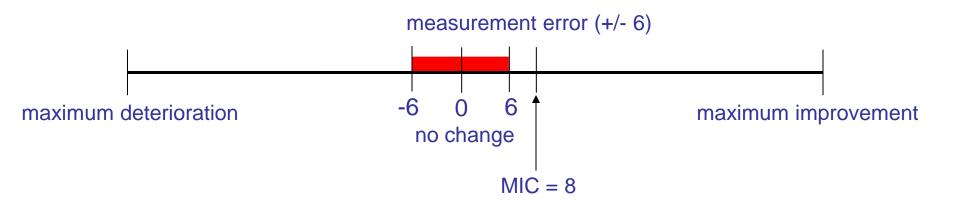
• SDC and MIC are different concepts !

METHODS FOR DETERMINING THE MIC


- Data driven methods Crosby et al. J Clin Epid 2003; 56: 395-407
 - Distribution-based
 - based on statistical characteristics of the instrument or the population
 - Anchor-based
 - Based on an external criterion that indicates the importance of the change
- Consensus based methods

Linking SDC to MIC

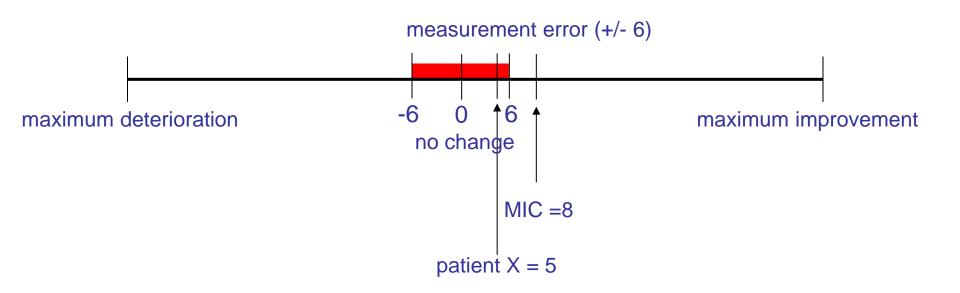
The smallest change that you **CAN** detect should be smaller than the smallest change that you **WANT** to detect


The SDC should be smaller than the MIC to distinguish important changes from measurement error in individual patients

Measurement error (SDC) = 6 points MIC = 5 points

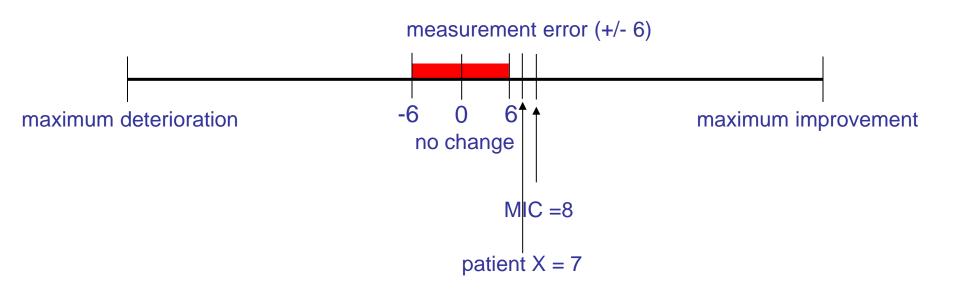
A change as large as the MIC can NOT be distinguished from measurement error

Measurement error = 6 points MIC = 8 points

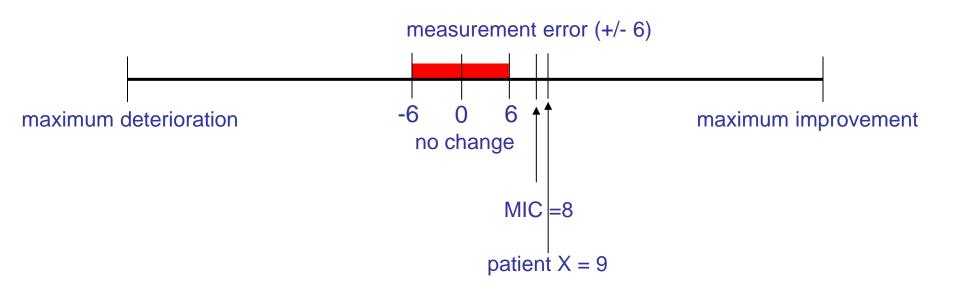


A change as large as the MIC CAN be distinguished from no change, despite measurement error 48

Linking SDC to MIC

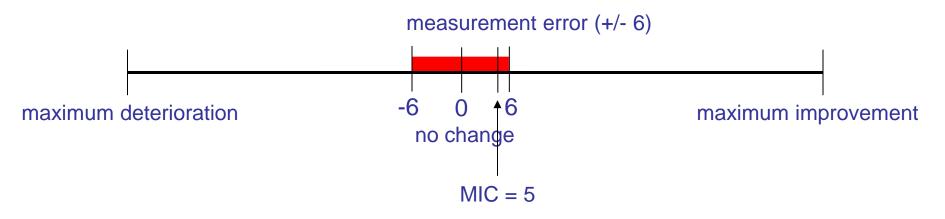

SDC and MIC are two different benchmarks that help to interprete change scores

Measurement error = 6 points MIC = 8 points Change of patient X = 5 points


A change of 5 points can NOT be distinguished from no change and is NOT important 50

Measurement error = 6 points MIC = 8 points Change of patient X = 7 points

A change of 7 points can be considered 'real' change but NOT important for the patient 51


Measurement error = 6 points MIC = 8 points Change of patient X = 9 points

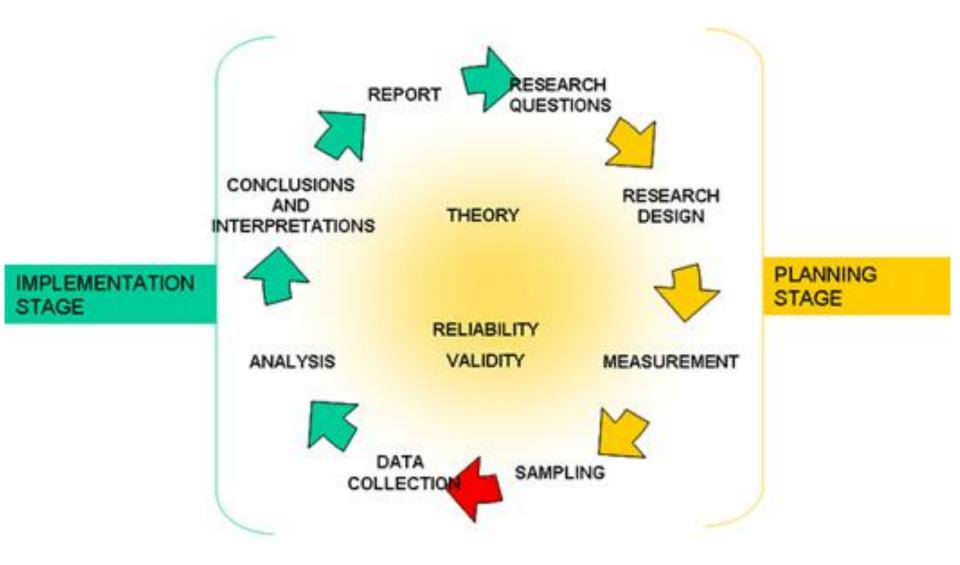
A change of 9 points can be considered 'real' change AND important for the patient

What if SDC > MIC?

If SDC is larger than MIC small but important changes (in an individual person) cannot be distinguished from measurement error

Solution:??

What if SDC > MIC?


Reducing measurement error

- 1. Increase the number of items in a scale
- 2. Take repeated measurements (k) and average.

The error variance is divided by k, thus the measurement error is divided by \sqrt{k}

Summary

- Validity
 - Face and content validity (no figures or statistical significance but still a structural and valuable approach)
 - Construct validity (hypothesis testing)
- Reliablity
 - Standard error of measurement \rightarrow SDC
 - Minimal important change
 - SDC and MIC are different concepts!
 - If SDC > MIC, measurement error should be reduced

